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This report demonstrates that ease of electron uptake by I-methyl-4-phenylpyridinium (MPP+), apparent- 
ly the active agent derived from MPTP, is influenced by conformation of the phenyl ring. From quantum 
mechanical calculations on MPP+ , electron affinity is most negative for the nearly coplanar arrangement, 
indicating that the molecule is most readily reduced in this geometry. Ionization potential is largest in the 
perpendicular conformation, thus making for most facile oxidation in that form. Site binding would be 
expected to alter conformation in comparison with the situation in solution, and, hence, to influence 
reduction potential. We suggest that electron transfer by MPP+ may play a role in inhibition of mitochon- 
drial respiration and in oxidative stress. 

KEY WORDS: MPTP, MPP+ , electron transfer (ET), inhibition of mitochondria1 ET, oxidative stress, 
quantum mechanical calculations. 

INTRODUCTION 

In the early stages of mechanistic development, various lines of evidence indicated 
formation of activated oxygen species in the MPTP (1 -methyl-4-phenyl- 1,2,3,6- 
tetrahydropyridine) (Figure 1) system.' Subsequently, there has been additional sup- 
port for involvement of oxidative stress arising from MPTP, MPP+ (I-methyl-4- 
phenylpyridinium) (Figure 2), or MPDP+ (l-methyI-4-phenyl-2,3-dihydropyridi- 
nium).2-8 Redox cycling by MPDP+ appears attractive since its reduction potential is 
appreciably more positive than that of MPP+.*s9 Although some believe that MPDP' 
may be the actual neurotoxin," its lifetime in vivo is not expected to be long due to 
ease of oxidation and the ability to generate potent oxidants via redox cycling. Most 
attention has centered on MPP+ as the key oxidative metabolite derived from 
MPTP. ' - I 4  

Various  investigator^^^'^^*'^-^^ concluded that MPP+ does not act by an oxidative 
stress mechanism, based partly on the absence of activated oxygen products, ineffec- 

'Presented at the 45th Southwest Regional American Chemical Society Meeting, Baton Rouge, LA, 
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FIGURE I Structure of MPTP. 

tiveness of antioxidants, and the rather negative reduction potential. In recent years 
increasing evidence has accumulated which indicates that the crucial effect may 
involve inhibition of mitochondrial energy production via interference with the elec- 
tron transport Mitochondria are vulnerable targets for damage by free 
 radical^.^^,^' It is reasonable to hypothesize that agents which can participate in 
electron transfer (ET) might interfere with electron transport chains essential for 
mitochondrial respiration. Since quinones are well-known redox cycling agents, a 
good example is the anthraquinone derivative rhein which inhibits at  the dehydrogen- 
ase coenzyme level via interference with ET.” We propose that MPP+ may participate 
in an analogous manner by acting as an ET block or  shunt while interfering with 
essential electron transport in the respiratory chain (eq. 1). Oxidative stress might also 
occur (eq. 2). 

+ e  
MPP + e MPP’ 

MPP’ + O? + MPP+ + 02’ 

This report deals with the influence of MPP+ conformation on the ease of electron 
uptake. Site binding of the neurotoxin would be expected to alter conformation in 
comparison with the situation in solution, and, hence, to influence reduction poten- 
tial. Quantum mechanical calculations are used to show the effect of conformational 
changes on energy, electron affinities and ionization potentials. 

FIGURE 2 Structure of MPP+ . 
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THEORETICAL STUDIES ON MPP+ 27 

METHODS 

Molecular orbital calculations were the Intermediate Neglect of Differential Overlap 
(INDO) type using the scheme of Ridley and Zerner.29*30 The atomic parameters used 
were the original INDO parameters of Pople and  coworker^.^' The geometry for the 
molecule was based on typical bond lengths for comparable systems3* and assuming 
idealized bond angles. Torsional energy curves were obtained by rotating the phenyl 
ring relative to the pyridyl plane of MPP+ (Figure 2) with all other coordinates frozen 
at the initially chosen geometry. The dihedral angle was changed in steps of 10 
degrees. Ionization potentials (IP) and electron affinities (EA) were calculated by 
means of Koopmans’ theorem33 using the frozen orbital approximation. The calcula- 
tions were run on a Hewlett-Packard 9000/350 workstation, a component of the 
Computational Facility for Theoretical Chemistry at the University of Idaho. 

RESULTS AND DISCUSSION 

Table 1 lists the Cartesian coordinates for MPP+ with an inter-ring dihedral angle of 
45 degrees. Table 2 gives the results of quantum mechanical calculations on this 
system as a function of dihedral angle; the data are summarized in Figures 3, 4 and 
5 .  Figure 3 illustrates the plot of the total energy of the system as a function of 
dihedral angle. The results show the nearly coplanar system to be lower in energy by 
approximately 8 kcal/mole. Figure 4 provides the orbital energy for the highest 
occupied MO (HOMO) while Figure 5 shows the orbital energy for the lowest 

TABLE 1 
Cartesian coordinates for MPP+ (in Angstroms) with an inter-ring dihedral angle of 45 degrees. 

X Y Z ATOM 
~ 

0.000000 
- 0.849000 
0.849000 

- 0.849000 
0.849000 
0.000000 
0.000000 

- 1.200000 
1.200000 

- I .200000 
I .200000 
0.000000 
0.000000 
0.000000 

- 1,520000 
1 S20000 

1 ,520000 

2. 150000 
- 2. I 50000 
2. I50000 

- 0.898000 
0.898000 
o.oOoO00 

- I ,520000 

-2.150000 

3.480000 
2.780000 
2.780000 
1.390000 
I .390000 
0.695000 

- 0.695000 
- 1.390000 
- I .390000 
- 2.780000 
- 2.780000 
-4.910000 
- 3.480000 
4.580000 
3.330000 
3.330000 
0.840000 
0.840000 

- 0.840000 
- 0.840000 
- 3.330000 
- 3.330000 
- 5.280000 
- 5.280000 
- 5.280000 

0.000000 
0.849000 

- 0.849000 
0.849000 

- 0.849000 
0.000000 
0.000000 
0.000000 
o.ooo0oo 
0.000000 
0.000000 
0.000000 
0.00oO00 
0.000000 
1.520000 

- 1.520000 
I ,520000 

- 1.520000 
o.ooo0oo 
0.000000 
0.000000 
0.000000 

- 0.581000 
-0.581000 
1.04oooO 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
N 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
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28 P. KOVACIC, W. D.  EDWARDS A N D  G. MING 

TABLE 2 
Relative Total Energies and Orbital Energies (in Hartrees) of MPPt Conformations. 

-1 18.966.. 

-1 18.968.. 

-1 18.970.- 

-118.972.. 

-1 18.974.- 

-1 18.976.- 

- 1  18.978.. 

-1 18.980 

Angle Total Energy Ionization Energy Electron Affinity 

- 

10 
20 
30 
40 
50 
60 
70 
80 
90 

- 118.978841 

- 188.972771 
- 118.975825 

- 118.970374 
- 188.968565 
- 1 18.967206 
- 118.966256 
- 118.965698 
- 118.965518 

- 0.43382 
- 0.43395 
- 0.43397 
- 0.43374 
-0.43319 
- 0.43238 
- 0.43 I51 
- 0.43085 
- 0.43060 

-0.17830 
- 0.17796 
- 0.17744 
- 0. I768 I 
- 0.17617 
- 0.17563 
- 0. I7523 
- 0. I7499 
-0.17491 

unoccupied MO (LUMO). According to Koopmans’ theorem, these orbital energies 
should correspond to experimentally measured IP’s; EA’s are experimentally difficult 
to measure and often have a large relaxation component. The figures demonstrate 
that as the phenyl fragment rotates out of the plane, the IP lowers slightly and then 
rises to a maximum at 90 degrees. The EA increases monotonically as the dihedral 
angle increases. Since this molecule is a cation, the EA is a negative number; therefore, 
the ion will accept an electron exothermically. The results lead to the conclusion that 
MPP+ is most easily reduced in the nearly coplanar conformation and most readily 
oxidized in the perpendicular form. It should be noted that in all calculations the 
energy is for the unsolvated, gas-phase ion at absolute zero, and, hence, only ap- 
proximates solution phase energy, Bodor e! al. recently reported optimized geometry 
and stability for MPP+ based on an MNDO study.” 

A number of reports address the mode of binding by MPP+ in the nigrostriatal 
neuronal system. There is no evidence for covalent attachment to intracellular pro- 
tein.j4 It appears that site binding involves n e ~ r o m e l a n i n . ~ ~ - ~ ~  In solution the phenyl 
moiety of MPP+ is relatively free to rotate. Conceivably, site binding hinders rotation 
because of steric constraints which may place the aryl group in a position more 
coplanar with the pyridinium ring. There is a relevant report of restriction of mole- 
cular motion in v i m 3 ’  Our calculations reveal that altered geometry could significant- 

Dihedral Angle 

-118.9641 : I 

Total Energy 

FIGURE 3 Total energy (in Hartrees) of MPP+ versus inter-ring dihedral angle. 
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Dihedral Angle 

-0.431 

-0.432. 

-0.433. 

-0.434- 

29 

-0.175.. 

-0.176.. 

-0.177.. 

-0.178.. 

HOMO 
Orbital Energy 

-0.4301 : I 

FIGURE 4 Ionization potential (in Hartrees) for MPP+ versus inter-ring dihedral angle. 

ly facilitate electron uptake and associated ET processes. The electrochemical charac- 
teristics of related model systems support this view. For example, the El,2 values for 
biphenyl and fluorene are - 1.67 and - 1.41 V (vs. NHE), respectively.m Since the 
methylene bridge of fluorene makes the value about 0.02V more negative4' 
(inductively), the coplanarity factor enhances the reduction potential by about 0.3 V, 
in general agreement with findings from the molecular orbital calculations for MPP+ 
conformations. The reduction potential for MPP+ in solution is about -0.9 V vs. 
NHE, converted from Ag/AgC19 and SCE42 (cf. ref. 19). Hence, one would estimate 
a value of about -0.6V for MPP+ bound with nearly coplanar geometry in vivo, 
which may permit ET in the biological milieu." 

A recent review summarizes the current status for the mechanism of MPTP ac- 
t i ~ n . ~ ~  Although oxidative stress by MPTP has been ruled out periodically by various 
investigators, reports pointing to formation of active oxygen species keep reoccurring, 
similar to resurrection of the proverbial cat. A recent example involves evidence for 
oxidative stress in the midbrain (but not in the striatum), including lipoperoxidation 

Dihedral Angle ' 

-0.174 I 

10 20 30 40 50 60 70 80 90 

LUMO 
Orbital Energy 

-0.179l 

FIGURE 5 Electron affinity (in Hartrees) versus inter-ring dihedral angle. 
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30 P. KOVACIC, W. D. EDWARDS AND G. MING 

when vitamin E is def i~ ien t .~’~’  From the totality of data it appears that oxidation can 
occur in certain brain areas, and under stringent conditions, in line with the marginal 
E,,, value of MPP+ . The mode of action most likely entails a ~ o r n p o n e n t ~ ~ ~ ~ * ~ ’  based 
on inhibition of mitochondria1 respiration, and an oxidative involving 
superoxide. 

A similar situation involving influence of conformation on electroreduction may 
pertain in the case of phencyclidine. 1-( 1 -phenylcyclohexyl)piperidine (PCP). The 
derived iminium ion, generated by oxidative metabolism, reduced at about - 0.7V 
(NHE).” A recent conformational study of PCP revealed the occurrence of high 
affinity binding when the axial phenyl is oriented at an angle of 90°.52 This geometry 
places the aromatic p-orbitals in the best position for stabilization by overlap with the 
electron formed by reduction of iminium. Hence E,,, should be increased. A related 
system comprises the nitroxide metabolite of cocaine, which apparently derives 
stabilization from through-space transannular effects during reduction.s3 
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